Contents
Advantages and limitations of ferrous materials in engineering application. 1
Advantages and limitations of ferrous materials in engineering application. 1
1C.Advatages and limitations of polymers in engineering application. 2
1D.Advatages and limitations of using ceramics in engineering application. 2
2A.Selection of ferrous metals in engineering application. 2
2B.Non-ferous alloys in engineering application. 3
2C.Polymers used in engineering application. 4
2D.Ceramics in engineering application. 4
3A.surface hardening treatments. 5
3B.Hardening of steel surfaces. 5
3D.Classes of stainless steel. 6
3F.Mechanisms of abrasive process. 7
4A.stages of fatigue failure process. 7
4B.variables affecting fracture toughness and appearance of materials. 7
4C.Selecvtion of creep resistant alloys. 7
5A.Conditions for underbead cracking. 8
5C.changes in HAZ of cold worked. 8
The main component of ferrous metals is iron but it also contains other metals and elements though in small amounts. These metals are magnetic since they have a large iron content that attracts a magnetic field. There are several advantages of using ferrous materials in engineering applications these include; the raw materials for their production are found abundantly on the earth’s crust (Callister,2000).Secondly they can be produced easily through an economical extraction process, alloying, refining as well as fabrication techniques. Finally they are versatile when it comes to physical and mechanical properties. There are also some limitations when using these ferrous materials in engineering application and these are; the fact that they have a relative high density, they have a low corrosion resistance and hence they require coating and finally they have low thermal and electrical conduction properties.
Non-ferrous metals are alloys with no iron in them. Their properties differ from those of ferrous metals. Their properties are a result of the metals that are not present in ferrous metals but are present in them. Some of their advantages when used in engineering applications are that they are easily fabricated, their ductile nature, they have a light weight, they are corrosion resistant and they are very strong at temperatures which are elevated (DeGarmo, Black &Kohser,1997).There are also some limitations to their use and they include a low modulus of elasticity, they are expensive when compared to iron and steel, they have a high density, they can be susceptible to corrosion in certain environments and their electrical and thermal conductivity is medium (Crook &Farmer, 2002).
These are substances that are made up of a mixture of many compounds. Their properties are therefore dependent on the rate of loading as well as temperatures. Polymers have many properties due to the mechanical behavior that they posses. Therefore there exist different polymers each with different characteristics. Polymers are advantageous when it comes to engineering applications because they are light in weight, resistant to corrosion, formability, have a low energy content, versatility in design, range from soft to hard and they have optical properties. The limitation of using polymers is its low thermal conductivity.
Ceramic are materials whose nature and properties is determined by they bonding that is found within the atoms. These are traditional materials made from substances that occur naturally as well as those which are highly refined or chemical, magnetic and electrical applications. Ceramics are advantageous in engineering application since some of them have high thermal conductivity while other have a low thermal conductivity. They are chemically stable in a wide range of temperatures. They resist high temperatures, high melting point and chemicals (Lahiri &Majumder, 2012). There exist ratios that are high between weight and strength. They also have a low rate of corrosion. When it comes to their limitations they posses low toughness as a small crack leads to their eventual fracture. It is quite difficult to make predictions of their strength of interfacial bond .they have a limited repair ability when damaged.
Ferrous metals posses different properties that are put into use in various industries. They have different specifications when it comes to mechanical and physical properties. For instance iron mild steel is malleable and ductile and hence used for production of bolts, nuts and screws. Iron can also be used as tool steel since it is hard and very ductile hence used in producing shears, drills and hammer heads.
Alloy steels have high hardenabilty compared to plain carbon steels. This is because alloy steels are made up of many elements and hence they have improved properties. The alloy steels are stronger, resistant to erosion and have improved harden ability ( DeGarmo, Black &Kohser,1997).One the other hand carbon content in the plain carbon steel determines its strength since carbon content is inversely proportional to ductility. Therefore a low hardenability results from a decrease in plain carbon. This means that the quality of the steel go down through impairing in low and high temperatures resulting to a loss in embrittlement and strength. Therefore if other elements are added to steel then their hardenability will be improved (DeGarmo, Black &Kohser, 1997
The non-ferrous metals have many properties but there are some of the non-ferrous metals whose applications are more suitable than others. Aluminum is suitable in Aircraft industry, road signs, cooking utensils because it is light. Aluminum use is increased in motor vehicles, engine blocks where the low weight increase fuel economy. Copper is a good electrical conductor hence used in electrical wiring. Zinc is used in decorative articles since it is ductile and malleable in hot and cold temperatures. Lead is highly resistant to corrosion hence used in mild steel as a protective coating.tin can be used to coat mild steel hence put into use in canning industry (DeGarmo, Black &Kohser, 1997).
Non-ferrous alloys exist in both cast and raw forms. The principal behind the existence of these two forms is cast non-ferrous alloys need high temperatures to be melted and then the liquid is poured into a mould and cooled before other parts are added. These alloys are thus brittle and hence they can not be easily formed through deformation. Wrought non ferrous alloys are shaped through pressing and shaping and hence this makes them more tensile and stronger. They can thus go through mechanical deformation.
Polymers have specific properties from their families like thermosets, thermoplastics and elastomers alongside general properties. Due to their characteristics they can be applied in materials which require moderate strength, low thermal and electrical conductivity, variety of colors are light in weight, and are easily fabricated. Their common use is household appliances such as containers. Those polymers that are pliable and soft can be used as materials for cushioning. Other can also be used for the insulation of electrical appliances.
There are two types of composite materials namely dispersion strengthening and fiber strengthening. The dispersion strengthening materials have a uniform dispersion of some substances that give motion of dislocations plastic in nature and hence reducing the plastic deformation in a solid. On the other hand fibers strengthening entail the inclusion of fibers with plastics and hence this combination has an influence on the strength and thermal conductivity dependent on their ration (Vernon, 1992).
Ceramics have many properties that can not be found in metals or plastics. They are used as non-reactive materials in chemicals erosive and corrosive fluids of low temperatures and corrosive gases and melts that have high temperatures. They can be used for thermal, optical, electrical and magnetic applications. They are used in mining and chemical engineering since they are non-reactive to erosive or corrosive fluids. They can also be used in heat engines and exchangers as they can resist thermal shock, corrosion and oxidation that involve high temperature (Richerson, 1988).
Ceramics are of two types industrial or engineering and domestic. Engineering ceramics is whereby ceramics are used for making materials in industries like automotive industry. On the other hand domestic ceramics are used for constructing as tiles for floors and walls in interior design.
Carburizing is a treatment method for making metal surfaces hard using heat. Heating metals in presence of materials that contain carbon, leads to its absorption with the metals. Carburizing can lead to increase in the surface hardness, carbon content on the surface, wear resistance, tensile strengths and change its volume as well as making it gain growth (Vernon, 1992).
Nitriding on the other hand makes surfaces harder through spreading of nitrogen on surfaces of metals using heat. Nitriding results to increased surface hardness, wear resistance, yield limit and reducing density of surface and elongation, carburizing is more suitable as a method of hardening surfaces as compared to nitriding (Vernon, 1992).carburizing also results to greater depth and hardness as compared to nitriding .carburizing is applied in gears, and bearings while nitriding is applied in valve guides and seating’s.
Steel surfaces need to be carburized since it is a suitable method for some steels particularly a steel alloys that contain 0.5% carbon while quenching and re-heating is used for steel that 0.4-0.5% carbon and 0.4-0.8% cast iron.
Metals undergo erosion corrosion when they are subjected to mechanical action like suspension of particles which are insoluble and hence they deteriorate as a result of the mechanical force. In instances where erosion factors hasten corrosion the attack is referred to as erosion corrosion (Schweitzer,2010).Erosion corrosion can be prevented by lowering flow rates of fluid path materials that contain high temperature fluids in them. Reduction in velocity, turbulence elimination and designing piping systems properly also reduce erosion corrosion (Schweitzer, 2010).
Ferritic stainless steel can be either ductile or brittle nature when their temperatures are reduced. They are hence used in thin walls due to their brittle characteristic. Martensitic stainless steel is strong and resistance to corrosion. It can therefore it can be put into use in light weight structures. Austenitic stainless steel is used in all temperatures from low to high. At low temperatures they are very tough while at high temperatures they are resistant to oxidation. They can therefore be used as non-magnetic metals (DeGarmo, .Black &Kohser, 1997).
Adhesive process involves the deformation of plastics in very small fragments on the surface after a frictional contact. It frequently occurs sue to the shearing at a particular point of contact. Abrasive process involves removing materials from a surface by the use of hard particles which are forced and moving against the surface of solids. Erosive process occurs as a result of an impact of solid or liquid particles on the surface of an object. (DeGarmo, Black &Kohser, 1997).
There are several mechanisms involved in abrasive wear and they are micro-plouging whereby materials are cut by debris in the form of flakes and used of ductile materials. Micro-cutting involves wear debris being cut or removed using sharp grit .micro-fatigue results from cycling loading from friction whereby the surface is deformed by grits. Micro-cracking involves high load of grit moving across a surface resulting to the cracking of the surface (DeGarmo, Black &Kohser, 1997).
Crack initiation is the first stage where a crack forms at a point of high stress .this is followed by crack propagation whereby the crack continues to grow at that area. The third stage is final failure whereby the crack reaches a critical size due to the continuous growth of crack.
Temperature increase results to dislocation of metals hence the yield strength is lowered. Surfaces of ductile metals thus appear dull and fibrous. Ductile brittle transitions appear cleavage or granular. Notch surety is another variable whereby is notch or cracks are present, a triaxial tension stress occurs adjacent to the notch or crack when a load is put. This results to formation of a brittle fracture incase there is prevention from plastic deformation. Thickness is a variable that is independent as the toughness of the fracture depends on how thick a material is. The materials thickness is inversely proportional to the toughness of the fracture (Callister, 2000).
Super alloys have good properties like good mechanical strength as well as creep resistance and hence they have slow movements towards deformation when they are stressed. Therefore there are factors that should be considered when selecting super alloys and these are the cost, macinability, high tensile strength an high stress levels at high temperatures for periods that are extended.
Underbead cracking occurs in welded steels as a result of various conditions which are existence of a heat affected zone crack forming adjacent to the fusion line. Another condition is presence of hydrogen in weld zone. This type of cracking occurs mostly in alloy steel.
The three reasons are slowing down of cooling rate, reduction of shrinkage stress and distortion of wells and finally the promotion of fusion and moisture removal.
A high dislocation is given by cold worked. The material is made brittle as a result of low temperatures. They are given a finer grain as well as a decrease in the amount of boundaries that are in existence between the grains found in their surfaces. Cold working is therefore a process whereby metals undergo plastic deformation below recrystallization (Huda, 2009).
The engineering materials available for use in different applications are wide in range. These materials all have particular properties and characteristics linked to them. There are also various advantages and disadvantages for each of the materials .there is a detailed discussion of the definition of these materials and structures
Metals are of two types ferrous and non-ferrous which can be put into application in different ways. Ferrous metals are widely used due to the large quantity of iron in the earth’s crust as well as their production in an economical extraction (Callister, 2000). The element iron is fourth most plentiful on the crust of the earth and for a very long time it has been used as a basic metal in engineering (DeGarmo, Black &Kohser, 1997). Nonferrous alloys are used for high resistance to particular wear apart from abrasion or resistance to wear in environments where corrosion is too high or beyond ferrous alloys service temperatures (Crook &Farmer.H, 2002).Nonferrous metals have an important role in modern technology due to their large number and their wide variety they provide a range that has no limit of properties to design engineers (DeGarmo, Black &Kohser, 1997).
Apart fro ferrous and non-ferrous metals there are also other engineering materials and these are ceramics and polymers. Ferroelectric liquid crystals that are stabilized by polymers are a representation of functional materials that can be applied in areas like privacy windows, optical shutters, photonics that can be switched on and dynamic holography (DeGarmo,Black &Kohser,1997).they are low in density, their tooling costs are low, resistance to corrosion, and versatile in design. Ceramics include both traditional materials from heating of substances occurring naturally and those materials that have undergone refining and synthesis for material’s that are used for modern mechanical, chemical, magnetic optical and electrical applications (Richerson,1988).It has good resistance to thermal shock as well as oxidation under high temperatures hence used in development of heat engines and exchangers( Richerson,D ,1988).domestic ceramics have been put into use in household products.
Abrasive materials are those materials that are hard and can cut or cause abrasion to other substances DeGarmo, Black &Kohser, 1997).abrasive systems involve flow of mineral ore through feed chute into upper portions of the zone for crushing which is made up of two plates one that is stationery while the other is in motion. Rock chunks make their way into the top and their sizes reduce every time there is cycling of jaws towards each other.
Callister, W. (2000).Materials science and engineering. John Wiley & Sons Inc, U.S.A. print
Crook, P. &Farmer, H. (2002).Friction and wear of Hard facing Alloys, Friction lubrication and wear technology. Volume 18,Haynes International Inc.
DeGarmo, E. P.Black J.T &Kohser, R. (1997).Materials and processes in Manufacturing,8th Edition. Prentice-Hall, Inc. U.S.A. print.
Lahiri, T &Majumder, P. (2012).The effects of cross linked chains of polymer network states of polymer stabilized ferroelectric molecules.p.2121
Schweitzer, P. (2010).Fundamentals of corrosion. Taylor and Francis Group.U.S.A.print
Vernon, J. (1992).Introduction to Engineering Materials., 3rd edition. Macmillan education Ltd. Hong Kong. print
Richerson, D. (1988).Ceramics Application in Manufacturing, 1st Edition. Society Manufacturing Engineers. Michigan U.S.A
Huda, Z.(2009).Effects of degrees of cold working and recrystalization on microstructure and hardness of commercial –Purity Aluminum, Vol 26,no.4,pp549-557.
Are you busy and do not have time to handle your assignment? Are you scared that your paper will not make the grade? Do you have responsibilities that may hinder you from turning in your assignment on time? Are you tired and can barely handle your assignment? Are your grades inconsistent?
Whichever your reason is, it is valid! You can get professional academic help from our service at affordable rates. We have a team of professional academic writers who can handle all your assignments.
Students barely have time to read. We got you! Have your literature essay or book review written without having the hassle of reading the book. You can get your literature paper custom-written for you by our literature specialists.
Do you struggle with finance? No need to torture yourself if finance is not your cup of tea. You can order your finance paper from our academic writing service and get 100% original work from competent finance experts.
Computer science is a tough subject. Fortunately, our computer science experts are up to the match. No need to stress and have sleepless nights. Our academic writers will tackle all your computer science assignments and deliver them on time. Let us handle all your python, java, ruby, JavaScript, php , C+ assignments!
While psychology may be an interesting subject, you may lack sufficient time to handle your assignments. Don’t despair; by using our academic writing service, you can be assured of perfect grades. Moreover, your grades will be consistent.
Engineering is quite a demanding subject. Students face a lot of pressure and barely have enough time to do what they love to do. Our academic writing service got you covered! Our engineering specialists follow the paper instructions and ensure timely delivery of the paper.
In the nursing course, you may have difficulties with literature reviews, annotated bibliographies, critical essays, and other assignments. Our nursing assignment writers will offer you professional nursing paper help at low prices.
Truth be told, sociology papers can be quite exhausting. Our academic writing service relieves you of fatigue, pressure, and stress. You can relax and have peace of mind as our academic writers handle your sociology assignment.
We take pride in having some of the best business writers in the industry. Our business writers have a lot of experience in the field. They are reliable, and you can be assured of a high-grade paper. They are able to handle business papers of any subject, length, deadline, and difficulty!
We boast of having some of the most experienced statistics experts in the industry. Our statistics experts have diverse skills, expertise, and knowledge to handle any kind of assignment. They have access to all kinds of software to get your assignment done.
Writing a law essay may prove to be an insurmountable obstacle, especially when you need to know the peculiarities of the legislative framework. Take advantage of our top-notch law specialists and get superb grades and 100% satisfaction.
We have highlighted some of the most popular subjects we handle above. Those are just a tip of the iceberg. We deal in all academic disciplines since our writers are as diverse. They have been drawn from across all disciplines, and orders are assigned to those writers believed to be the best in the field. In a nutshell, there is no task we cannot handle; all you need to do is place your order with us. As long as your instructions are clear, just trust we shall deliver irrespective of the discipline.
Our essay writers are graduates with bachelor's, masters, Ph.D., and doctorate degrees in various subjects. The minimum requirement to be an essay writer with our essay writing service is to have a college degree. All our academic writers have a minimum of two years of academic writing. We have a stringent recruitment process to ensure that we get only the most competent essay writers in the industry. We also ensure that the writers are handsomely compensated for their value. The majority of our writers are native English speakers. As such, the fluency of language and grammar is impeccable.
There is a very low likelihood that you won’t like the paper.
Not at all. All papers are written from scratch. There is no way your tutor or instructor will realize that you did not write the paper yourself. In fact, we recommend using our assignment help services for consistent results.
We check all papers for plagiarism before we submit them. We use powerful plagiarism checking software such as SafeAssign, LopesWrite, and Turnitin. We also upload the plagiarism report so that you can review it. We understand that plagiarism is academic suicide. We would not take the risk of submitting plagiarized work and jeopardize your academic journey. Furthermore, we do not sell or use prewritten papers, and each paper is written from scratch.
You determine when you get the paper by setting the deadline when placing the order. All papers are delivered within the deadline. We are well aware that we operate in a time-sensitive industry. As such, we have laid out strategies to ensure that the client receives the paper on time and they never miss the deadline. We understand that papers that are submitted late have some points deducted. We do not want you to miss any points due to late submission. We work on beating deadlines by huge margins in order to ensure that you have ample time to review the paper before you submit it.
We have a privacy and confidentiality policy that guides our work. We NEVER share any customer information with third parties. Noone will ever know that you used our assignment help services. It’s only between you and us. We are bound by our policies to protect the customer’s identity and information. All your information, such as your names, phone number, email, order information, and so on, are protected. We have robust security systems that ensure that your data is protected. Hacking our systems is close to impossible, and it has never happened.
You fill all the paper instructions in the order form. Make sure you include all the helpful materials so that our academic writers can deliver the perfect paper. It will also help to eliminate unnecessary revisions.
Proceed to pay for the paper so that it can be assigned to one of our expert academic writers. The paper subject is matched with the writer’s area of specialization.
You communicate with the writer and know about the progress of the paper. The client can ask the writer for drafts of the paper. The client can upload extra material and include additional instructions from the lecturer. Receive a paper.
The paper is sent to your email and uploaded to your personal account. You also get a plagiarism report attached to your paper.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more