Spray-On Solar Power Cells
A solar cell, or photovoltaic cell, is a semiconductor device consisting of a large-area p-n junction diode, which, in the presence of sunlight is capable of generating usable electrical energy. This conversion is called the photovoltaic effect. The field of research related to solar cells is known as photovoltaics.
Solar cells have many applications. They are particularly well suited to, and historically used in situations where electrical power from the grid is unavailable, such as in remote area power systems, Earth orbiting satellites, handheld calculators, remote radiotelephones, water pumping applications, etc. Solar cells, in the form of modules or solar panels, are appearing on building roofs where they are connected through an inverter to the electricity grid in a net metering arrangement.
Various materials have been investigated for solar cells. There are two main criteria – efficiency and cost. Efficiency is a ratio of the electric power output to the light power input. Ideally, near the equator at noon on a clear day, the solar radiation is approximately 1000 W/m2. So a ten percent efficient module of one square meter can power a 100-watt light bulb. Costs and efficiencies of the materials vary greatly. By far the most common material for solar cells (and all other semiconductor devices) is crystalline silicon. Crystalline silicon solar cells come in three primary categories. Single crystal or monocrystalline wafers are made using the Czochralski process. Most commercial monocrystalline cells have efficiencies on the order of 14%. The SunPower cells have high efficiencies around 20%. Single crystal cells tend to be expensive, and because they are cut from cylindrical ingots, they cannot completely cover a module without a substantial waste of refined silicon.
Most monocrystalline panels have uncovered gaps at the corners of four cells. Poly or multi-crystalline made from cast ingots – large crucibles of molten silicon carefully cooled and solidified. These cells are cheaper than single crystal cells, but also somewhat less efficient, however, they can easily be formed into square shapes that cover a greater fraction of a panel than monocrystalline cells, and this compensates for their lower efficiencies. Ribbon silicon is formed by drawing flat thin films from molten silicon and has a multicrystalline structure. These cells are typically the least efficient, but there is a cost savings since there is very little silicon waste because this approach does not require sawing from ingots. These technologies are wafer-based manufacturing. In other words, in each of the above approaches, self-supporting wafers of ~300 micrometers thick are fabricated and then soldered together to form a module.
Thin film approaches are module based. The entire module substrate is coated with the desired layers and a laser scribe is then used to delineate individual cells. Two main thin film approaches are amorphous silicon films and general chalcogenide films of Cu (InxGa1-x)(SexS1-x) 2, or CIS. Amorphous silicon films are fabricated using chemical vapor deposition techniques, typically plasma enhanced (PE-CVD). These cells have low efficiencies of around eight percent. While the CIS films can achieve 11% efficiency, their costs are still too high. There are additional materials and approaches on the horizon, for example, Sanyo has pioneered the HIT cell. In this technology, amorphous silicon films are deposited onto crystalline silicon wafers.
“Nano” refers to one billionth of a meter: the size of a few atoms clustered together to form a molecule. Nanotechnology is potentially more revolutionary than just miniaturization. Atoms and molecules are dominated by different forces, and governed by different rules, when they interact on the scale of the nanometer. In living organisms, atoms and molecules organize themselves into proteins, tissues, and ultimately living, thinking, emoting beings.
Nanotechnology comprises technological developments on the nanometer scale, usually 0.1 to 100 nm. One nanometer equals one thousandth of a micrometer or one millionth of a millimeter. The term nanotechnology is often used interchangeably with molecular nanotechnology, also known as “MNT,” a hypothetical, advanced form of nanotechnology believed to be achievable at some point in the future. Molecular nanotechnology includes the concept of mechanosynthesis. The term nanoscience is used to describe the interdisciplinary field of science devoted to the advancement of nanotechnology.
Nanotechnologists are seeking to harness the same principles to prompt matter into constructing itself. Atoms and molecules don’t obey the laws of physics we experience day-to-day: instead they reveal in their behavior the mysterious, surprising rules of quantum mechanics. Nanotechnologists turn quantum mechanics’ rules to advantage to build new materials, chips, and medical treatments tailored to society’s needs.
The size scale of nanotechnology makes it susceptible to quantum-based phenomena, often leading to counterintuitive results. These nanoscale phenomena may include quantum size effects and molecular forces such as Van der Waals forces. Furthermore, the vastly increased ratio of surface area to volume opens new possibilities in surface-based science, such as catalysis. “An increase in funding for basic research in this important new field, as well as a handful of Nobel Prizes awarded to scientists who are pursuing it, has caused many to believe nanotechnology is coming into its own.”
Researchers at the University of Toronto have invented an infrared-sensitive material that is five times more efficient at turning the sun’s power into electrical energy than current methods. The discovery could lead to shirts and sweaters capable of recharging our cell phones and other wireless devices, said Ted Sargent, professor of electrical and computer engineering at the University of Toronto. Existing technology has given us solution-processible, light-sensitive materials that have made large, low-cost solar cells, displays, and sensors possible, but these materials have so far only worked in the visible light spectrum, says Sargent. “These same functions are needed in the infrared for many imaging applications in the medical field and for fiber optic communications,”
he said. The discovery may also help in the quest for renewable energy sources. Flexible, roller-processed solar cells have the potential to harness the sun’s power, but efficiency, flexibility and cost are going to determine how that potential becomes practice, says Josh Wolfe, Managing Partner and nanotechnology venture capital investor at Lux Capital in Manhattan. Wolfe, who was not part of the research team, says the findings in the A nanometer-resolved microscope image of a nanoparticle, or quantum dots, similar to that used to make the infrared detectors. The particle is six nanometers — billionths of a meter — in diameter. Individual columns of bonded lead and sulfur atoms are resolved in the image. Such nanoparticles were suspended in a solvent and dried like paint to make a large-area device. Image courtesy of M.A. Hines & G.D. Scholes, Advanced Materials (2003) 15, 1845.
paper are significant: “When you have a material advance which literally materially changes the way that energy is absorbed and transmitted to our devices… somebody out there tinkering away in a bedroom or in a government lab is going to come up with a great idea for a new device that will shock us all.”
The plastic material uses nanotechnology and contains the first solar cells able to harness the sun’s invisible, infrared rays, five times more efficient than current solar cell technology. Like paint, the composite can be sprayed onto other materials and used as portable electricity. The researchers envision that one day “solar farms” consisting of the plastic material could be rolled across deserts to generate enough clean energy to supply the entire planet’s power needs. Professor Peter Peumans of Stanford University, who has reviewed the University of Toronto team’s research, also acknowledges the groundbreaking nature of the work. “Our calculations show that, with further improvements in efficiency, combining infrared and visible photovoltaics could allow up to 30 per cent of the sun’s radiant energy to be harnessed, compared to six per cent in today’s best plastic solar cells.”
The sun that reaches the Earth’s surface delivers 10,000 times more energy than we consume. This type of energy source won’t change the climate, unlike other energy sources, because the energy is already arriving in its final form, heat. This breakthrough could have far reaching effects of how we generate energy.
Bibliography
Brautigam, Tara. “Canadian Professor Develops Plastic that More Efficiently Converts Solar Energy.” Canadian Press. January 10, 2005. July 1, 2005. < http://www.mindfully.org/Technology/2005/Infrared-Sensitive-Plastic10jan05.htm>.
Conan-Davies, Richard. “Spray on solar cells.” January 12, 2005. July 1, 2005. http://clearlyexplained.com/news/nature/2005/jan/1N1201_2005.html.
Hines, M.A. And G.D. Scholes. Advanced Materials (2003) 15, 1845.
Hutcheson, G. Dan. “The First Nanochips.” Scientific American. April 2004. July 1, 2005. < http://www.sciam.com/article.cfm?chanID=sa002& articleID=000CE8C4-DC31-1055-973683414B7F0000>.
L’Abbe, Sonnet. “Infrared-sensitive material could lead to better use of solar spectrum.” January 10, 2005. July 1, 2005. < http://www.news.utoronto.ca/bin6/050110-832.asp>.
Lovgren, Stefan. “Spray-On Solar-Power Cells Are True Breakthrough.” National Geographic News. January 14, 2005. July 1, 2005. .
“New plastic can better convert solar energy.” Canadian Press. Jan 9, 2005. July 1, 2005. .
“Nano paint could boost antiterrorism, rescue efforts.” February 2, 2005. July 1, 2005. .
Porod, Wolfgang. “Nanotechnology is getting real: after years of hype, it is entering the market.” The Chief Executive. March 2005. July 1, 2005. .
“Spray-On Solar Cells.” January 17, 2005. July 1, 2005. .
Wolfgang Porod “Nanotechnology is getting real: after years of hype, it is entering the market.”
The Chief Executive. March 2005. July 1, 2005. .
Lovgren, Stefan. “Spray-On Solar-Power Cells Are True Breakthrough.” National Geographic News. January 14, 2005. July 1, 2005. .
Tara Brautigam. “Canadian Professor Develops Plastic that More Efficiently Converts Solar Energy.” Canadian Press. January 10, 2005. July 1, 2005. < http://www.mindfully.org/Technology/2005/Infrared-Sensitive-Plastic10jan05.htm>.
L’Abbe, Sonnet. “Infrared-sensitive material could lead to better use of solar spectrum.” January 10, 2005. July 1, 2005. < http://www.news.utoronto.ca/bin6/050110-832.asp>.
Are you busy and do not have time to handle your assignment? Are you scared that your paper will not make the grade? Do you have responsibilities that may hinder you from turning in your assignment on time? Are you tired and can barely handle your assignment? Are your grades inconsistent?
Whichever your reason is, it is valid! You can get professional academic help from our service at affordable rates. We have a team of professional academic writers who can handle all your assignments.
Students barely have time to read. We got you! Have your literature essay or book review written without having the hassle of reading the book. You can get your literature paper custom-written for you by our literature specialists.
Do you struggle with finance? No need to torture yourself if finance is not your cup of tea. You can order your finance paper from our academic writing service and get 100% original work from competent finance experts.
Computer science is a tough subject. Fortunately, our computer science experts are up to the match. No need to stress and have sleepless nights. Our academic writers will tackle all your computer science assignments and deliver them on time. Let us handle all your python, java, ruby, JavaScript, php , C+ assignments!
While psychology may be an interesting subject, you may lack sufficient time to handle your assignments. Don’t despair; by using our academic writing service, you can be assured of perfect grades. Moreover, your grades will be consistent.
Engineering is quite a demanding subject. Students face a lot of pressure and barely have enough time to do what they love to do. Our academic writing service got you covered! Our engineering specialists follow the paper instructions and ensure timely delivery of the paper.
In the nursing course, you may have difficulties with literature reviews, annotated bibliographies, critical essays, and other assignments. Our nursing assignment writers will offer you professional nursing paper help at low prices.
Truth be told, sociology papers can be quite exhausting. Our academic writing service relieves you of fatigue, pressure, and stress. You can relax and have peace of mind as our academic writers handle your sociology assignment.
We take pride in having some of the best business writers in the industry. Our business writers have a lot of experience in the field. They are reliable, and you can be assured of a high-grade paper. They are able to handle business papers of any subject, length, deadline, and difficulty!
We boast of having some of the most experienced statistics experts in the industry. Our statistics experts have diverse skills, expertise, and knowledge to handle any kind of assignment. They have access to all kinds of software to get your assignment done.
Writing a law essay may prove to be an insurmountable obstacle, especially when you need to know the peculiarities of the legislative framework. Take advantage of our top-notch law specialists and get superb grades and 100% satisfaction.
We have highlighted some of the most popular subjects we handle above. Those are just a tip of the iceberg. We deal in all academic disciplines since our writers are as diverse. They have been drawn from across all disciplines, and orders are assigned to those writers believed to be the best in the field. In a nutshell, there is no task we cannot handle; all you need to do is place your order with us. As long as your instructions are clear, just trust we shall deliver irrespective of the discipline.
Our essay writers are graduates with bachelor's, masters, Ph.D., and doctorate degrees in various subjects. The minimum requirement to be an essay writer with our essay writing service is to have a college degree. All our academic writers have a minimum of two years of academic writing. We have a stringent recruitment process to ensure that we get only the most competent essay writers in the industry. We also ensure that the writers are handsomely compensated for their value. The majority of our writers are native English speakers. As such, the fluency of language and grammar is impeccable.
There is a very low likelihood that you won’t like the paper.
Not at all. All papers are written from scratch. There is no way your tutor or instructor will realize that you did not write the paper yourself. In fact, we recommend using our assignment help services for consistent results.
We check all papers for plagiarism before we submit them. We use powerful plagiarism checking software such as SafeAssign, LopesWrite, and Turnitin. We also upload the plagiarism report so that you can review it. We understand that plagiarism is academic suicide. We would not take the risk of submitting plagiarized work and jeopardize your academic journey. Furthermore, we do not sell or use prewritten papers, and each paper is written from scratch.
You determine when you get the paper by setting the deadline when placing the order. All papers are delivered within the deadline. We are well aware that we operate in a time-sensitive industry. As such, we have laid out strategies to ensure that the client receives the paper on time and they never miss the deadline. We understand that papers that are submitted late have some points deducted. We do not want you to miss any points due to late submission. We work on beating deadlines by huge margins in order to ensure that you have ample time to review the paper before you submit it.
We have a privacy and confidentiality policy that guides our work. We NEVER share any customer information with third parties. Noone will ever know that you used our assignment help services. It’s only between you and us. We are bound by our policies to protect the customer’s identity and information. All your information, such as your names, phone number, email, order information, and so on, are protected. We have robust security systems that ensure that your data is protected. Hacking our systems is close to impossible, and it has never happened.
You fill all the paper instructions in the order form. Make sure you include all the helpful materials so that our academic writers can deliver the perfect paper. It will also help to eliminate unnecessary revisions.
Proceed to pay for the paper so that it can be assigned to one of our expert academic writers. The paper subject is matched with the writer’s area of specialization.
You communicate with the writer and know about the progress of the paper. The client can ask the writer for drafts of the paper. The client can upload extra material and include additional instructions from the lecturer. Receive a paper.
The paper is sent to your email and uploaded to your personal account. You also get a plagiarism report attached to your paper.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more